nature communications

Article

https://doi.org/10.1038/s41467-025-65974-8

Topological turning points across the human

lifespan

Received: 19 March 2025

Accepted: 24 October 2025

Published online: 25 November 2025

M Check for updates

Alexa Mousley®"/ , Richard A. I. Bethlehem ®2, Fang-Cheng Yeh®3 &

Duncan E. Astle ®'*

Structural topology develops non-linearly across the lifespan and is strongly
related to cognitive trajectories. We gathered diffusion imaging from datasets
with a collective age range of zero to 90 years old (N = 4,216). We analyzed how
12 graph theory metrics of organization change with age and projected these
data into manifold spaces using Uniform Manifold Projection and Approx-
imation. With these manifolds, we identified four major topological turning
points across the lifespan - around nine, 32, 66, and 83 years old. These ages
defined five major epochs of topological development, each with distinctive
age-related changes in topology. These lifespan epochs each have a distinct

direction of topological development and specific changes in the organiza-
tional properties driving the age-topology relationship. This study under-
scores the complex, non-linear nature of human development, with unique
phases of topological maturation, which can only be illuminated with a mul-
tivariate, lifespan, population-level perspective.

Trajectories of change in brain structure and function emerge across
the lifespan'™. Topology, the complex motifs within which neural
connections are organized, develops with age and is associated with
key cognitive, behavioral, and mental health outcomes®'°. Topology-
outcome relationships have been established within relatively narrow
age ranges, such as childhood®”'°. But what are the underlying prin-
ciples of organizational change? Are there key points in our lifespans
wherein the brain transitions into a different phase of developmental
change? Addressing these questions requires comprehensive mapping
of lifespan network topology alongside a multidimensional framework
capable of establishing the non-linear dynamics of developmental
change.

Prior research has revealed significant differences in structural
topology associated with both individual differences®*™ and lifespan
development*>™>. A typically developing infant’s brain network dis-
plays adult-like structure with hub distribution, rich clubs, small-
worldness, and modularity at birth'**, Throughout early develop-
ment, networks become more integrated with increasing strength and
efficiency and decreasing modularity” . In adulthood, many
researchers describe an inverted “U” shape of development with a peak

occurring around 30 years old where the brain is maximally efficient
and integrated” . This research uses the terms inflection point'****° or
peak age'™ to describe important points of change in organizational
metrics - many of which occur in the fourth decade of life and intersect
with other developmental and aging milestones. After this point and
into late life, aging is associated with reduced connectivity, mainly
through pruning of weak connections'>**, increased modularity”, and
more pronounced rich club organization' than earlier in life. In addi-
tion to these age-related changes, topological variation is associated
with differences in individual outcomes. For example, there is a posi-
tive association between global efficiency (more short paths for
information transfer) and intelligence in children’ and a negative
association between global efficiency and cognitive impairments in
aging individuals". These established variations and lifespan fluctua-
tions of organizational principles underscore the dynamic and com-
plex nature of topology development.

Mapping neural systems across the lifespan calls for data-driven
methods that can handle complex data and capture high variability
without making strong assumptions about the underlying data®.
Manifold learning is a popular technique to project high-dimensional
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data into a low-dimensional space by filtering out closely related fea-
tures likely driven by similar mechanisms®***, These projections, cre-
ated using non-linear dimensionality reduction techniques such as
Uniform Manifold Approximation and Projection (UMAP), are easier to
interpret while maintaining the intrinsic structure of complex data®,
UMAP, in particular, captures both local and global data patterns with
faster run times than similar methods (e.g., t-SNE)*. The manifold
spaces themselves graphically represent the relationships in the ori-
ginal high-dimensional space and, therefore, offer an opportunity to
leverage projections to identify points of change. We define these
points of change as turning points, indicating significant shifts in the
overall trajectory of topology, rather than inflection or peak points,
which refer to changes in individual organizational measures.

This study takes a data-driven approach to chart structural
topological development across the human lifespan. Specifically, we
(1) characterize connectivity development; (2) explore topological
integration, segregation, and centrality; (3) use UMAP to define topo-
logical manifold spaces and identify major turning points across the
lifespan therein; and (4) examine how these turning points capture
important phases of topological development.

Results

We gathered diffusion imaging data from nine datasets with a com-
bined age range of zero to 90 years old (Fig. 1a, b; Supplementary
Table 1). A large sample (N =4216) including all available images was
fiber tracked® and harmonized® (Fig. 1c). For analysis, multiple graph
theory metrics®™ (Supplementary Table 2) were calculated using nor-
malized weighted networks with a cross-sectional, neurotypical subset
(n=3802; female n =1994; male n=1808). Following topological ana-
lysis, we projected age-predicted organizational measures into

manifold spaces using UMAP* and determined significant turning
points in topological development across the lifespan.

Connectivity

Before exploring network organization, we first examined general
changes in connectivity across the lifespan by preserving the dis-
tribution of density by applying an absolute streamline-count thresh-
old that yielded densities that were 70% of the average raw density per
single-year age bin (Fig. 1c; Supplementary Fig. 1a). Density—the per-
cent of connections present in the network®*—changed non-linearly
across age with high-density networks present around birth and 30
years old and sparse networks observed around 10 and 80+ years old
(Fig. 2b; Fuensiey.age = 219.20, estimated df = 8.92, p<2.00 x 107). In
addition, node strength—the sum of edge weights*—significantly
increased across the lifespan in a linear pattern both in average
strength across all nodes and maximum strength across all nodes
(Fig. 2¢; Faperage strength.age = 33.10, estimated df = 5.46, p<2.00 x 107
Fmaximum strength,age = 29.15, estimated df = 3.85, p <2.00 x 107¢). Overall,
these networks displayed the expected pattern of shifting from dense,
weak networks in early life to sparse, strong networks in later
life*** (Fig. 2a).

Topology

To remove the confounding factor of network density from the ana-
lysis of topological changes, we conducted a density-controlled ana-
lysis where each network was constrained to exactly 10% density
(Fig. 1c). This method allows for fair comparison of topological struc-
ture across the lifespan without total connectivity biases, though a full
topological analysis with variable density networks is also provided
(Supplementary Fig. 2, Table 3). Topological metrics can be
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Fig. 1| Datasets demographics, methods schematic, and network connectivity.
a The distribution of ages (years) across each dataset (dHCP = Developing Human
Connectome Project; BCP = Baby Connectome Project; CALM = Centre for Atten-
tion Learning and Memory; RED = Resilience in Education and Development; ACE =
Attention and Cognition in Education; HCPd = Human Connectome Project
Development; HCPya = Human Connectome Project Young Adult; camCAN =
Cambridge Centre for Ageing and Neuroscience; HCPa = Human Connectome
Project Ageing). b A histogram and density plot of sex distribution across age for
the entire sample. ¢ Methods schematic demonstrating that fiber tracking was
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performed for all participants, each registered to an age-appropriate AAL90 atlas,
followed by harmonization using the ComBat algorithm* across the atlases and
datasets. Next, two thresholding analyses were conducted—variable density and
density-controlled. For variable density analysis, networks were thresholded to an
age-specific average density (70% of raw density) to preserve variation in network
density across the lifespan. For the density-controlled analysis, all networks were
thresholded to exactly 10% density” to allow for direct topological comparisons,
which are not biased by differences in total connectivity.
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Fig. 2 | Changes in total network connectivity across the lifespan. a Average
binarized connectivity matrices and average normalized weighted connectivity
matrices. Above each consecutive pair of matrices, the percent change indicates
the difference in total connectivity. b Density (%) significantly fluctuated across the
lifespan with a lifetime maximum at birth and minimum around 14 years old
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(p<2.00 x 107) (assessed via GAM). (c) The maximum (p <2.00 x 107¢) and
average strength (p <2.00 x 107) significantly and nearly linearly increased across
the lifespan with a lifetime minimum at eight years old and maximum at 90 years
old (assessed via GAM). Shaded area around lines of best fit represents 95% con-
fidence intervals. *** indicates p < 0.001, ** indicates p <0.01, * indicates p < 0.05.

categorized as measures of network integration, segregation or cen-
trality. Integration measures, such as global efficiency, assess the ease
of communication across the network®. Highly integrated topology is
typically achieved by the network being well-connected by short path
lengths, which conveys that the network is optimized for efficient
communication®. Network segregation, on the other hand, relates to
partitioning the network into subgroups (e.g., modules), which are
typically measured through the density or strength of within-group
connections®. Segregated topology increases the network’s capacity
for specialized processing by use of subunits within a larger complex
network®*°, Lastly, measures of centrality convey the presence of
nodes that are particularly important for network function (i.e., ‘cen-
tral’ nodes). For example, a node that is a member of numerous
shortest paths is highly central as it plays a key role in information
transfer. Thus, centrality not only facilitates network communication
but also increases networks’ resilience to random knockouts of
nodes*.. All these concepts are important to understand in the context
of the lifespan because different topological structures have strengths
and weaknesses related to network function and thus provide clues as
to the ‘goals’ of developmental change.

Global efficiency, which measures how well the network is con-
nected by short path lengths®, significantly fluctuated across the
lifespan, peaking at 29 years old before steadily declining to a mini-
mum at 90 years old (Fig. 3a; Table 1). Other integration metrics
include characteristic path length, the average shortest path length of
the network*, and small-worldness, the ratio of the average clustering
coefficient to characteristic path length*. Both showed similar but
inverse patterns to global efficiency (Fig. 3a; Table 1). Additionally,
average network strength significantly increased in a more linear pat-
tern, reaching its maximum at 90 years old (Fig. 3a; Table 1). These
results suggest that while network strength linearly increases with age,
topological integration initially decreases in the first decade, peaks at
the beginning of the fourth decade, and then declines for the rest of
the lifespan.

Modularity, how well a network can be divided into non-over-
lapping, highly intra-connected node groups®, significantly fluc-
tuated across the lifespan with a minimum at 31 years old and a
maximum at 90 years old (Fig. 3b; Table 1). Core/periphery structure,
which assesses how well a network separates into a non-overlapping
dense core and a sparse periphery®, fluctuated more than mod-
ularity, peaking at 20 years old and reaching a minimum at 55 years

old (Fig. 3b; Table 1). Additionally, networks can be segregated based
on a subnetwork with a specific strength (i.e., s-core) or degree (i.e.,
k-core)*. While k-core did not significantly change across age, s-core
significantly fluctuated across the lifespan with a minimum at 12
years old, followed by a continuous increase to a maximum at 90
years old.

Compared to global segregation metrics, average local segrega-
tion measures increased more linearly across the lifespan. Local effi-
ciency—the extent to which neighboring nodes are connected by short
paths’—and clustering coefficient—the extent to which neighboring
connected nodes are also connected to each other**—both sig-
nificantly increased to a maximum at 90 years old (Fig. 3b; Table 1).
These results emphasize a difference between global segregation,
which oscillated across age, and average local segregation, which
showed more linear patterns. Beyond differences in fluctuations in
mid-life, network segregation peaked in late life.

Centrality measures a node’s importance to the network, often
based on inclusion in key paths. Betweenness centrality measures the
fraction of shortest path lengths that pass through the node*®, which
fluctuated across the lifespan, reaching a minimum at 31 years old and
maximum at 90 years old (Fig. 3¢c; Table 1). Comparatively, subgraph
centrality—the weighted sum of all closed walks for a node**—sig-
nificantly increased in a more linear pattern (Fig. 3c; Table 1). These
results highlight differences in the developmental pattern between
individual centrality metrics but indicate a continuous increase in
centrality starting around the fifth decade.

Generally, network organization displays linear and fluctuating
patterns across the lifespan. Various sex effects were found, though
these results could be explained by brain size differences that are not
considered in this analysis®*” (Supplementary Fig. 3). Overall, average
strength, average local efficiency, average clustering coefficient,
s-core, and subgraph centrality display linear-like patterns while the
other metrics appear to have peaks and valleys throughout the lifespan
—many of which appear around 30 years old.

Construction of lifespan epochs

Many topological measures are highly correlated and therefore
convey redundant and unique topological characteristics (Supple-
mentary Fig. 4a). Thus, we reduced the dimensionality of this data
using manifold learning to examine non-linear changes in lifespan
topology. These manifolds are 3-dimensional topological spaces that
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Fig. 3 | Topological changes across the lifespan in density-controlled networks.
a Global efficiency peaked while characteristic path length displayed a lifetime mini-
mum around 29 years old (p <2.00 x 10™). Small-worldness (p <2.00 x 10) showed
a similar developmental pattern to characteristic path length (p <2.00 x 107), with all
ages demonstrating the presence of small-world structure (i.e., small-worldness > 1).
Average network strength, however, significantly increased across the lifespan in a
more linear pattern (p <2.00 x 10™). b Modularity significantly fluctuated across the
lifespan, peaking in aging individuals (p < 2.00 x 107). Core/periphery structure had a
lifetime peak around 20 years old (p < 2.00 x 10™). S-Core (reported as the number of
nodes included in the subnetwork) significantly increased across the lifespan in a
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linear-like pattern (p <2.00 x 10™). Local efficiency (p <2.00 x 107) and clustering
coefficient (p <2.00 x 10™) both significantly increased linearly across the lifespan.
K-Core (reported as the number of nodes included in the subnetwork) did not sig-
nificantly change across the lifespan (p = 0.192). ¢ Average betweenness centrality had
a lifetime minimum around 31 years old and significantly increased in late life (p <2.00
x 107). Average subgraph centrality significantly increases across the lifespan
(p<2.00 x 107, All graphs are GAMs. Shaded area around lines of best fit represents
95% confidence intervals. ** indicates p < 0.001, ** indicates p < 0.01, * indi-

cates p <0.05.

capture crucial patterns in the data. Manifolds were constructed
using significant age-predicted metrics (i.e., excluding k-core), which
were averaged for each age. Considering the influence of parameter
choice on UMAP projections*®, we created 968 UMAPs with a variety
of parameters to capture both local and global-level information
(Fig. 4). Manifolds were then used to determine major turning points
across the lifespan, marking epochs where topological development
is occurring along the same trajectory (Fig. 4c; see “Methods”;

“Turning point identification”). Major turning points occur around
age nine, 32, 66, and 83 (Fig. 4c). Sex-stratified projections and major
turning point are in the supplement (Supplementary Fig. 5). These
turning points define five major epochs of life: Epoch One, which
lasts from zero to nine years; Epoch Two, which extends from nine to
32 years; Epoch Three, which ranges from 32 to 66 years; Epoch Four,
which includes 66 to 83 years; and Epoch Five, which extends from
83 to 90 years.
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Table 1| Generalized additive model statistics of graph theory metrics across the lifespan

F-value Estimated df p-value Lifespan Min. Lifespan Max. Peaks/ Valleys
Integration Global Efficiency 42.33 7.93 <2.00x10™" 90 29 9, 29, 45, 50
Characteristic Path Length ~ 43.55 7.83 <2.00x107® 29 90 9, 29, 46, 48
Small-Worldness 32.62 8.08 <2.00x 107 (0] 82 1, 27, 49, 61, 82
Average Strength 45.64 3.89 <2.00x10™ 0 90
Segregation Modularity 60.93 6.67 <2.00x107® 31 90 31
Core/Periphery 9.04 7.60 <2.00 x 10" 55 20 8,20, 35, 40, 55, 80
S-Core 43.63 5.00 <2.00 x10™" 12 90 12
K-Core - - 0.192 - - -
Local Efficiency 54.29 4.69 <2.00x10™" 0 90 -
Clustering Coefficient 62.42 476 <2.00 x 10 6 90 6
Centrality Betweenness Centrality 55.29 8.29 <2.00x107® 31 90 30, 42, 52
Subgraph Centrality 55.29 4.86 <2.00x107® 0 90 30, 44

Lifespan minimum (Min.), Lifespan maximum (Max.), and Peaks/Valleys are reported as age in years. Estimated degrees of freedom is a GAM output indicating the model's complexity or ‘wiggliness'.

Peaks/Valleys are ages at which the derivative of the GAM switches sign (-/+ or +/-).
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Fig. 4 | The definition of turning points. a A manifold space displayed across each
dimension (top row) and in a 3-dimensional plot. The scatter plots show the age-
average UMAP projection with the polynomial lines of best fit (black). Lines of best
fit were constructed for each of the 968 UMAPs. b Six examples of lines of best fit
through manifolds with different UMAP parameters. These lines are used to

determine turning points (green points). ¢ All turning points identified across the
968 UMAP projections are plotted in a histogram and kernel density plot. These
plots were used to determine the major turning points, which are ages most fre-
quently identified as turning points across all projections. The major turning points
occur at nine, 32, 66, and 83 years old (red ‘X’).

We explored changes across these epochs using Pearson corre-
lations to assess directional relationships between age and topological
measures and LASSO regularized regressions to identify which orga-
nizational properties drive the relationship between topology and age.

At each turning point, we analyzed significant changes in directionality
and key driving topological metrics. Local-level correlations between
measures and age within each epoch are in the supplement (Supple-
mentary Fig. 6).
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Fig. 5 | Topological changes within the five topological epochs of life.

a Schematic showing the ranges of each epoch across the lifespan. To the left of the
schematic, per epoch, the metric with the highest LASSO coefficient (), indicating
the strongest predictor of age, is shown. On the right side of the schematic, next to
each epoch, the metric with the largest correlation (r) is displayed, highlighting the
strongest directional changes across age. For the epochs in which the driving factor

and strongest directional change are the same, the metrics are highlighted in gray.
The combination plots show all the regularized LASSO coefficients in a bar graph
(left y-axis) and the correlations as a scatter plot (right y-axis) for (b) epoch 5, (c)
epoch 4, (d) epoch 3, (e) epoch 2, and (f) epoch 1. Red scatter points indicate
Pearson correlations with p <0.05. Dotted gray lines highlight zero on the corre-
lation axis.

Epoch 1: 0-9 years old “infancy into childhood”

The first epoch ranges from zero to nine years (n=733), covering the
period of infancy through childhood. Significant correlations were
found within this epoch in eight organizational measures, character-
ized by decreasing global integration, increasing local segregation, and
stable centrality (Fig. 5f; Table 2). The regularized LASSO regression
retained eight measures and identified the clustering coefficient as the
strongest topological predictor of age (A=0.04; Fig. 5f; Table 2). In
contrast, small-worldness has the largest correlation with age in this
epoch (Fig. 5f; Table 2). Thus, while an increase in small-worldness
across this period is the largest directional pattern, the average clus-
tering coefficient is the crucial predictor of age (Fig. 5a). Significant
correlations between clustering and age were found in 55 out of the 90

regions after false-discovery rate (FDR) correction, and these
regions are generally disrupted across the brain (Supplementary
Fig. 6¢). Overall, topological development from zero to nine years old
is characterized by decreasing global integration, however, clustering
coefficient is a key topological measure across this period. Thus,
despite decreasing integration overall, a child’s age is most distinct
topologically in the extent to which neighboring nodes are
interconnected.

The first epoch of life ends around nine years old, which was the
most frequently identified turning point, occurring 241 times across all
UMAPs (Fig. 4c). Around nine years old, we observed the factor driving
the relationship between topology and age shift from clustering
coefficient to small-worldness (Fig. 5a). Directional changes occur as
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Table 2 | Regularized LASSO coefficients and correlations within epochs of life

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
Integration Global Efficiency r=-0.27** r=0.34*** r=-0.13*** r=-0.12* -
B=0.81 = = B=0.09 B=0.16
Characteristic Path Length r=0.24** r=-0.32*** r=0.14** r=0.12* -
- B=0.19 B=0.32 - -
Small-Worldness r=0.61** r=-0.47*** r=0.17*** - -
B=2.46 B=2.50 B=131 - B=0.19
Strength r=0.13*** r=0.21%** r=0.24*** - -
B=274 = = = =
Segregation Modularity - r=-0.30*** r=0.14** r=0.18*** -
B3=0.47 3=0.30 B=0.01 3=0.70 -
Core/Periphery r=-0.20*** r=-0.06* r=-0.09** - -
B=0.36 - - - -
S-Core - r=0.16*** r=0.25** - -
B=0.02 - B=0.30 - -
Local Efficiency r=0.12** r=0.20"** r=0.28"** - -
_ - B=1.80 - =
Clustering Coefficient r=0.10** r=0.19*** r=0.28*** - -
B=3.40 B=0.75 B=0.28 - -
Centrality Betweenness Centrality r=-0.10** r=-0.41"** r=0.11*** r=0.10* -
B=1.21 B=1.40 B=0.13 - -
Subgraph Centrality - r=0.14*** r=0.05* r=0.09* r=0.27*
B=0.87 = B=0.33 B=0.24 B=0.34

ris the Pearson correlation coefficient and B is the LASSO coefficient. Dotted lines indicate where the direction of significant correlations between consecutive epochs occurs. Dashes indicate a non-
significant correlation or zero 8 coefficients. *** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05. All correlation p-values are located in Supplementary Table 4.

well, with significantly decreasing integration changing to significantly
increasing integration after nine years old (Table 2; Supplemen-
tary Fig. 7a).

Epoch 2: 9-32 years old “Adolescence”

The second epoch occurs from nine to 32 years old (n=1,728) and
encompasses late childhood through early adulthood. Within this
epoch, all topological measures were significantly correlated with age,
characterized by increasing network integration and complex segre-
gation and centrality patterns (Fig. Se; Table 2). Generally, strength-
based and local-level segregation increased, but global modularity
decreased (Fig. 5e; Table 2). Coinciding with the largest correlation,
small-worldness was the largest predictor factor for identifying age
(A=0.35; Fig. 5e; Table 2). Together, the results highlight a complex
pattern of topological change from nine to 32 that can be character-
ized by increasing integration alongside decreasing global segregation
and increasing local-level segregation. During this period, increasing
small-worldness is particularly distinct, indicating that the network is
becoming both more globally efficient and more locally specialized
with age.

The second epoch of life ends around 32 years old (Fig. 4c;
identified 97 times). At this age, there are many changes in the direc-
tionality of topological development. Before 32 years old, global effi-
ciency increased while characteristic path length, small-worldness,
modularity, and betweenness centrality significantly decreased. These
correlations shift to the opposite direction after 32 years old (Table 2;
Supplementary Fig. 7a). This result suggests a shift around 32 years old
from increasing to decreasing integration as well as changes from
decreasing to increasing modularity and betweenness centrality. In
addition, the topological metric driving the relationship with age
changes from small-worldness to local efficiency around 32 years old.
Thus, the beginning of the fourth decade of life marks the end of a
phase of increasing efficiency and integration and the start of a period
of increasing segregation.

Epoch 3: 32-66 years old “Adulthood”

The third epoch occurs from 32-66 years old (n=1092), extending
across three decades of adulthood. Across this period, 10 topological
measures were significantly correlated with age, characterized by
decreasing integration, general increases in segregation, and minimal
centrality changes (Fig. 5d; Table 2). While clustering coefficient was
most highly correlated with age, the LASSO retained local efficiency as
the largest predictor of age across this period (A=0.63; Fig. 5d;
Table 2). Importantly, clustering coefficient and local efficiency are
highly correlated (r= 0.91; Supplementary Fig. 5a). Thus, both analyses
indicate that the most notable feature in topology across this age
range is increasing connectivity between neighboring regions. Clus-
tering coefficient was significant in 71 regions and local efficiency was
significant in 74 regions (after FDR correction), indicating this age-
topology relationship was disrupted across the majority of the brain
(Supplementary Fig. 6a, c). Together, these results suggest network
integration decreased with minimal centrality changes, and while
segregation was complex, most segregation metrics increased across
this epoch.

The third epoch ends around 66 years old, which was the least
distinct of the four major turning points (identified 44 times; Fig. 4c).
While there are no significant changes in the directionality of topology
at this age (Supplementary Fig. 7a), we observed the driving topolo-
gical metric shift from local efficiency to modularity (Fig. 5a). Thus, this
turning point reflects a shift in the topological features most predictive
of age from increasing connectivity between neighboring nodes to
increasing separability into highly interconnected groups.

Epoch 4: 66-83 years old “Early aging”

The fourth epoch ranges from 66 to 83 years old (n=406), spanning
the shift from adulthood into early aging. Only four topological
metrics showed significant correlation with age (Fig. 5c; Table 2). While
this period is topologically most distinct in modular changes,
decreasing integration and increasing centrality are also present
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(Fig. 5¢c; Table 2). The regularization of the LASSO had to be weakened
for any predictors to survive (see “Methods”; “Statistics”). The LASSO
indicated that modularity is the strongest predictor of age, aligning
with the largest correlation in this period (A =0.20; Fig. 5c; Table 2).
The last turning point in the lifespan occurs around 83 years old, which
was the second most frequently occurring turning point (Fig. 4c;
identified 111 times). There were no significant changes in direction-
ality at this age (Supplementary Fig. 7a); however, the most important
factor for identifying age shifts from modularity to subgraph cen-
trality. In other words, from this turning point onwards, the most age-
associated topological change that occurs is that individual nodes in
the network have increasing importance in local-level connectivity.

Epoch 5: 83-90 years old “Late aging”

The last epoch is 83-90 years old (n = 93), which ranges from late aging
individuals to the maximum age included in this study. Only subgraph
centrality was significantly associated with age during their period
(Fig. 5b; Table 2). Importantly, compared to all epochs, this epoch has
the lowest statistical power due to sample size (mean power for epoch
one = 0.72, epoch two = 0.97, epoch three = 0.92, epoch four = 0.35
and epoch five = 0.16). In addition, the regularization of the LASSO had
to be weakened for any predictors to survive (see “Methods”; “Statis-
tics”). With the less-sparse model, subgraph centrality was the stron-
gest predictor of age, which aligns with the only significant correlation
(A=0.11; Fig. 5b; Table 2). Importantly, subgraph centrality was only
significantly correlated with age in 10 regions (Supplementary Fig. 6€),
including the cuneus (right and left), the superior (right) and middle
(left) occipital gyri, and the postcentral gyrus (right). Thus, an increase
in centrality in late life has a spatial-temporal pattern. Together, these
results suggest a potential reduction in the age-topology relationship,
with increasing subgraph centrality as the most notable topological
change of this period.

Characterizing all turning points

Beyond detailing changes in topology within each epoch, it is helpful
to compare topology differences across epochs. While UMAP provides
information about where major turning points occur, we cannot
interpret what is topologically changing at these points due to UMAPs
having arbitrary dimensions (e.g., no loading scores). Simply put,
UMAP informs us where non-linear changes occur, but not what those
changes are. To explore what topological changes occur around these
major turning points, we ran a Principal Components Analysis (PCA)
with the 11 topological metrics across the entire lifespan, using a par-
allel analysis to identify three principal components (PCs) that explain
76.61% of the variance in topological measures (Fig. 6a; Supplementary
Fig. 4b-e). While the fact that PCA is a linear method makes it less
suitable for identifying where fluctuations occur in the data compared
to manifold learning techniques, it is a useful tool for comparing the
pre-defined epochs as it generates interpretable loading scores. Seg-
regation measures load most heavily onto PC 1, while integration
metrics load mostly on PC 2, and both segregation and centrality
metrics load onto PC 3 (Fig. 6a; Supplementary Fig. 4b—e). PCA scores
across epochs had significantly different variances and means in all PCs
(Fig. 6a, c; Table 3).

We compared average PCA scores between consecutive epochs.
Significant shifts in PC 1 and PC 2 occur between epochs one and two
(PC1p=0.002; PC2 p=2.15x10") and between epochs two and three
(PC1p=4.95x10"3; PC2p=0.002) (Fig. 6a, c; Supplementary Fig. 7b).
Neither epoch comparison had significant differences in PC 3 (epochs
one and two p =0.692; epochs two and three p=0.972) (Supplemen-
tary Fig. 7b). These results suggest that the first two turning points -
nine and 32 years old - identify significant shifts occurring in the two
primary components, upon which load most segregation and inte-
gration metrics (Fig. 6a; Supplementary Fig. 4b, c). Epochs three and
four—the 66-year-old turning point—is the only point where a

significant shift in PCA scores occurs across all PCs (Fig. 6a, c; Sup-
plementary Fig. 7b; PC 1: p=1.01 x 10; PC 2: p=2.47 x 107, PC 3:
p=1.82x107)., These results suggest a distinct shift across all primary
components despite no directional changes in topology. The last
turning point (83 years old) captures significant changes only in PC 2
(p=0.008) but not PC 1 (p=0.912) or PC 3 (p=0.065) (Fig. 6a, c;
Supplementary Fig. 7b). Together, these results indicate that differ-
ences in topology before and after 83 years old appear to be mostly
within integration metrics, which load onto PC 2 (Fig. 6a; Supple-
mentary Fig. 4c).

Lastly, we used the trajectories of PCA scores within epochs to
examine differences in developmental patterns. Using dynamic time
warping, we qualitatively compared the trajectory patterns between
each consecutive epoch (Supplementary Fig. 7c) (see “Methods”;
“Dynamic time warping”). The warping distance (Euclidean) conveys
how different two trajectories are—larger distances indicate more
different trajectory patterns than shorter distances. This analysis
showed that epochs one and two have the most similar trajectory
pattern, followed by epochs four and five and epochs two and three
(Fig. 6b, c). The two epochs with the largest difference in trajectories
are three and four, suggesting that the actual pattern of topological
change is the most dissimilar before and after 66 years old, compared
to any other turning point (Fig. 6b, c).

When comparing all analyses across all turning points, 32 years
old emerges at the largest turning point across the lifespan (Fig. 6¢).
The last turning point—83 years old—appears to be the smallest
(Fig. 6¢). The two ‘middle’ turning points—66 and nine years old—are
distinct from each other in that significant directionality changes occur
around nine years old but none at 66 years old (Fig. 6c). Together,
these results indicate that the major lifespan turning points signify
critical shifts in the trajectory of topological development.

Discussion

Our results emphasize the complex, non-linear topological changes
that occur across the lifespan, with oscillating network integration
development between childhood, adolescence, and adulthood. We
found that centrality is important during adolescence but minimally
for the rest of the life. Additionally, our results show a pattern of
increased network segregation but a decline of the age-topology
relationship in late life. Broadly, the trajectory of topological devel-
opment can be distinctly separated into multiple phases of develop-
ment, with four major turning points occurring around nine, 32, 66,
and 83 years old. These points indicate where the trajectory of topo-
logical development shifts significantly and begins a new projection
into a different area of the manifold space. To the best of our knowl-
edge, manifolds have not previously been used to identify topological
turning points, therefore we aim to review where these turning points
align with important anatomical and contextual milestones.

The first turning point indicates that the childhood topological
trajectory ends around nine years old. The first few years of life are
marked by consolidation and competitive elimination of synapses™
and rapid increases in gray and white matter volume'. Our results
indicated that, topologically, structural networks develop along the
same dimensions from birth until about nine years old. This is con-
sistent with a previously identified cortical turning point around seven
years old, where global efficiency reaches a minimum, cortical thick-
ness peaks, and cortical folding stabilizes®. Thus, within the first
decade of life, while myelination and white matter volume increase
rapidly, topological efficiency decreases parallel to synaptic elimina-
tion. This age also aligns with the onset of puberty, which begins
between eight and 13 years old for females and nine and 14 years old
for males®*, marking the initiation of significant alterations in hormone
expression® and robust neurological changes®>°. Coinciding with this
topological and neurobiological shift, the transition from childhood to
adolescence brings with it increased risk of mental health disorders®,
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Fig. 6 | Characterization of turning points using Principal Components
Analysis (PCA). a Parallel analysis shows that three PCs (principal components)
should be retained. The three PCs account for 76.61% of the variance in topological
data across the lifespan. On the left, there is a three-dimensional loading plot for the
PCA. PC1’s four largest loadings are clustering coefficient, local efficiency, strength,
and s-core. PC 2’s four largest loadings are global efficiency, characteristic path
length, betweenness centrality, and modularity. PC 3’s four largest loadings are
subgraph centrality, core/periphery structure, small-worldness, and modularity. On
the right, average PCA scores for each epoch are plotted in 3-dimensional space.

b From the DTW analysis, the summed standardized warping distances across all

PCs for consecutive epochs are plotted in a bar graph. ¢ A turning point summary
schematic shows a 3-dimensional manifold with turning points (black spheres) and
demonstrates the direction of the projection of each epoch. Next to each turning
point is a table with the total number of significant changes in Pearson correlations
of individual topological metrics (‘Direction’), significant shifts across PCs (‘PCA”)

(assessed via Welch’s ANOVA), and the total standardized warping distance (‘Tra-

jectory’). Together, this schematic characterizes changes that occur at each major
turning point. ** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05.

progression in cognitive capacity”, and modifications of socio-
emotional and behavioral development™. Thus, the nine-year-old
turning point not only signifies a distinct shift in topological devel-
opment but also aligns with key cognitive, behavioral, and mental
health developmental milestones.

The second lifespan epoch, ages nine to 32, indicates that the
trajectory of topological development remains consistent across this
period. While adolescence begins with puberty, the end of adolescence
is less clear, with older definitions ending before 20 and more recent
definitions extending into the mid-20s°’. The transition to adulthood is
influenced by cultural, historical, and social factors, making it context-
dependent rather than a purely biological shift®**>. Our findings sug-
gest that in Western countries (i.e., the United Kingdom and United

States of America), adolescent topological development extends to
around 32 years old, before brain networks begin a new trajectory of
topological development.

Additionally, 32 years old is the strongest topological turning
point of the lifespan. At this age, the most directional changes and
a large shift in trajectory occur compared to the other turning points.
These findings are highly consistent with previous work exploring
individual topological metrics”™ that identify significant peak/inflec-
tion points at the beginning of the fourth decade. Beyond organiza-
tional changes, this turning point aligns with developmental
trajectories of white matter. White matter volume and fractional ani-
sotropy peak around 29 years old"****, mean diffusivity arrives at a
minimum around 36 years old®***, and radial diffusivity reaches a
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Table 3 | Statistics for comparing PCA scores across epochs

Principal Component Analysis

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
PC1 Variance 3.04 3.13 4.07 3.60 3.19
Levene’s Test F=15.06, p=3.20 x10™
Mean (+ STD) -0.78 +1.74 -0.50+1.77 0.62+2.02 1.67+1.90 1.85+1.80
Welch’s ANOVA Fs75.00)=201.84, p=5.91x 107%
PC 2 Variance 2.57 3.08 2.89 3.72 3.39
Levene’s Test F=4.83,p=6.97x10°
Mean (+ STD) -0.38£1.60 0.10+1.76 0.36£1.70 -0.48+1.93 -1.20+1.85
Welch’s ANOVA Fs71.57)=38.79, p=9.58 x 102
PC3 Variance 0.93 1.08 115 1.91 1.44
Levene’s Test F=9.25, p=195x10""
Mean (+ STD) -0.15+0.96 -0.09+1.04 -0.07+1.07 0.52+1.38 0.90+1.20
Welch’s ANOVA Fise6.14=35.14, p=3.13 x 102

PC are principal components. STD is the standard deviation. Welch’s ANOVA was one-way.

minimum around 31 years old®®. Thus, across the phase of life, while
white matter integrity and volume are increasing rapidly, topological
structure at the macroscale is becoming more efficient and less seg-
regated. Together, these results indicate that significant changes in
white matter integrity and topological development occur around the
beginning of the fourth decade of life.

After age 32, the longest epoch begins, covering three decades of
adulthood until age 66. Compared to rapid maturation in earlier life,
changes in network architecture slow during this period*****, which is
consistent with our results that there are no major topological turning
points until the 60s. Aligned with the slowing of white matter
maturation during this period, the patterns of topological change are
less complex than previous epochs, with clear increases in segregation
and decreases in efficiency. This period of network stability also cor-
responds with a plateau in intelligence and personality*’. Conse-
quently, not only do we observe the alignment of turning points with
significant anatomical and cognitive milestones, but also the stable
topological epochs of life coincide with periods of anatomical, cogni-
tive, and behavior consistency.

The third turning point, age 66, marks a topological shift without
directional changes. Consistent with past work”™, we find no direc-
tional changes in network organization occurring at this age. However,
there were significant differences in PCA scores in all PCs. Therefore,
this turning point may reflect protracted or accelerated development.
Indeed, accelerated decreases in white matter integrity are known to
occur in late life®>. This decrease in white matter integrity is generally
referred to as ‘age-related’ degeneration, meaning reductions in white
matter coherence are expected in late aging individuals®®. Topologi-
cally, we find that during this phase macroscale reorganizational pat-
terns simplifies—with the most distinct change being increasing
modularity**’, Together, these patterns suggest a sparsification of
the structural network in aging. Additionally, the early 60 s mark an
important shift in health and cognition in high-income countries, such
as the onset of dementia and hypertension®®®’, Hypertension, char-
acterized by chronically elevated blood pressure, is linked to cognitive
decline and accelerated brain aging and is also a known risk factor for
dementia’®”". Thus, as with the first two turning points, age 66 also
aligns with significant shifts in health and cognition.

The last turning point marks a distinct decline in the age topology.
After 83 years old, only subgraph centrality retained a significant
relationship with age. It is possible that the lack of significant findings
reflects the small sample size (n=93), which is reflected in the low
statistical power in this epoch. However, when considering the sig-
nificant correlations from previous epochs, a declining trend appears

after middle age; epoch three had 11 significant correlations, epoch
four had four significant correlations, and epoch five had one sig-
nificant correlation. Therefore, this could reflect a true weakening
relationship between age and structural brain topology in late life.

The data processing pipeline and manifold construction involve
numerous design choices, and while we have attempted to test how
these may impact our results, some caveats remain. First, we used four
versions of the AAL90 atlas, warped to two-year, one-year, and neo-
natal brain sizes, to address early-life brain volume change'’>”*. This
step was crucial for a consistent parcellation necessary for unbiased
topological analysis, but atlas alignment differences may exist. Second,
we harmonized tracked networks and provided 10 additional analyses
exploring various harmonization methods (Supplementary Fig. 7). We
chose the approach with the fewest remaining dataset effects. Notably,
no turning points coincided with dataset transitions (e.g., BCP ends at
five and CALM starts at six), as we would expect if turning points were
dataset effects. However, harmonization may have over- or under-
corrected for dataset differences. Third, networks were thresholded to
a fixed density to ensure unbiased topological analysis, though this
may obscure individual differences and small age-related changes.
Additional analyses to assess the effects of these choices (Supple-
mentary Fig. 1b) and variable density analysis demonstrate rela-
tively consistent turning points (Supplementary Fig. 8d). Despite this
consistency, density-controlled results must be interpreted in the
context of thresholding. Third, we performed sensitivity analyses on
turning point identification, which show generally consistent results,
though it is important to note that the degree of the polynomial fit
influences turning points (Supplementary Fig. 8). Additionally, our
manifold spaces were constrained to three dimensions for straight-
forward interpretation; however, higher-dimensional UMAP embed-
dings could potentially reveal finer-grained but important turning
points in topology. Finally, although we employed UMAP for its speed
and its ability to capture both global and local structure in the data®,
applying other non-linear techniques—such as diffusion map embed-
ding or t-SNE—could offer valuable context for assessing the robust-
ness of these results.

Additional key limitations are present in the project design.
Despite sex effects in individual organizational measures, we did not
sex-stratify this data due to sample size considerations. Future work
should explore if the four major turning points identified here are sex
sensitive. Moreover, the cross-sectional design of this project, due to
the limited availability of longitudinal lifespan datasets, limits
exploration of causality or temporal dynamics within an individual.
Additionally, while all participants included were deemed healthy by
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respective project guidelines, the gap between a healthy older indivi-
dual and their peers may be larger than that between a healthy middle-
aged individual and their peers. It is reasonable to speculate that older
individuals in this study are healthier than typical individuals their age,
which could bias the older sample.

In conclusion, our findings suggest that structural topological
development occurs non-linearly across the lifespan, with major
turning points occurring around nine, 32, 66, and 83 years old. These
ages demarcate periods of complex topological development with
distinct age-related changes. This work reinforces the need for multi-
variate, lifespan, population-level approaches to deepen our under-
standing of complex topological development.

Methods

Datasets and preprocessing

This study includes nine separate datasets that were collected and
preprocessed specifically to suit the age range for the sample. Details
on dataset samples, imaging procedures and preprocessing are sum-
marized in Supplementary Materials (Supplementary Table 1). Four
datasets were preprocessed in-house using QSlprep™, while five
datasets were preprocessed by Dr Yeh and made publicly available on
DSI studio’s Fiber Data Hub (https:/brain.labsolver.org/)” (Supple-
mentary Table 1).

In-house processed datasets. The Baby Connectome Project (BCP) is
a multi-site study conducted at the University of North Carolina at
Chapel Hill and the University of Minnesota aimed at capturing the
typical development of infants’®. This dataset works as an extension of
previous human connectome projects but is optimized for imaging
and processing suitable for zero to five-year-olds® (Supplementary
Table 1). During harmonization, we utilized all scans from infants
12 months or older; however, for the analysis, we excluded longitudinal
and repeat scans by using only the first scan for every infant (Supple-
mentary Table 1). Some individuals had two different types of scans
within the same session - 6-shell or dir-79 (Supplementary Table 1).
Due to previous reports that the 6-shell scheme resulted in increased
accuracy of local fiber orientation estimates’®, if both scan types were
available, the 6-shell scan was used.

The Centre for Attention, Learning and Memory (CALM), Resi-
lience in Education and Development (RED), and Attention and Cog-
nition in Education (ACE) datasets were collected at the MRC
Cognition and Brain Sciences Unit at the University of Cambridge. The
CALM cohort is a specialized sample of children who are
neurodivergent”’. All scans were included during harmonization;
however, only neurotypical controls were included in the analysis
(Supplementary Table 1). The RED dataset was aimed to sample chil-
dren from diverse socio-economic (SES) backgrounds’. One partici-
pant was removed due to missing age data (Supplementary Table 1;
resulting sample size of n=75). The ACE dataset aimed to capture a
realistic representation of SES across the UK’® (Supplementary
Table 1).

DSI Studio semi-processed datasets. Dr Yeh has preprocessed and
made available many datasets on DSI Studio’s Fiber Data Hub (https://
brain.labsolver.org/)”®. The dataset-specific preprocessing methods
below are also published on the DSI Studio website.

The Developing Human Connectome Project (dHCP) is a colla-
borative effort between King’s College London, Imperial College Lon-
don, and Oxford University that collects neuroimaging data from
neonates”. All longitudinal scans and infants born earlier than
37 weeks’ gestation (preterm) were excluded from this analysis,
resulting in a cross-sectional, term infant sample (Supplementary
Table 1). The images were denoised and corrected for Gibbs ringing,
motion, eddy current, and susceptibility artifact using the diffusion
SHARD pipeline®. A quality check was conducted using neighboring

DWI correction (NDC)®. 34 scans (including repeated scans) were
excluded due to their low NDC values identified by a median value-
based outlier detector.

The Human Connectome Project Development (HCPd) aims to
capture a diverse but typical developmental sample®2. This multi-site
study includes Harvard University, University of California-Los
Angeles, University of Minnesota, and Washington University in St.
Louis®’. Sample and imaging information can be found in Supple-
mentary Table 1 and in further detail Somerville et al.*’. The suscept-
ibility and eddy current artifacts were corrected using FSL topup and
eddy (FMRIB, Oxford). The correction was conducted through the
integrated interface in DSI Studio’s (“Chen” release). The diffusion MRI
data were rotated to align with the AC-PC line. The accuracy of b-table
orientation was examined by comparing fiber orientations with those
of a population-averaged template®.

The Human Connectome Project Young Adult (HCPya) is a multi-
site study collected by the Washington University-University of Min-
nesota Consortium of the Human Connectome Project (WU-Minn
HCP), which aims to capture a large sample of healthy adults®*. Sample
and imaging information can be found in Supplementary Table 1and in
further detail Van Essen et al.%%. A group average template was con-
structed from a total of 930 subjects. The diffusion data were recon-
structed in the MNI space using q-space diffeomorphic
reconstruction® to obtain the spin distribution function®®.

The Human Connectome Project Ageing (HCPa) is a multi-site
study aimed at capturing healthy aging from 36 to 100" years old®.
The sample used in this analysis excluded participants scanned at
100" years old (n=12), resulting in a cross-sectional sample ranging
from 36 to 90 years old (Supplementary Table 1; n=706). Further
details on the HCPa sample and imaging methods can be found at
Bookheimer et al.*®. The susceptibility and eddy current artifacts
were corrected using FSL topup and eddy (FMRIB, Oxford). The
correction was conducted through the integrated interface in DSI
Studio’s (“Chen” release). The diffusion MRI data were rotated to
align with the AC-PC line.

The Cambridge Centre for Ageing and Neuroscience (camCAN)
project aims to capture age-related changes in neurocognitive
systems®”. This project is conducted at the MRC Cogpnition and Brain
Sciences Unit, University of Cambridge, and focuses on exploring
important aspects of health in aging. Sample and imaging information
can be found in Supplementary Table 1 and in further detail Shafto
et al.¥’. The b-table was checked by an automatic quality control rou-
tine to ensure its accuracy®®.

For dHCP, HCPd, and HCPa, the accuracy of b-table orientation
was examined by comparing fiber orientations with those of a
population-averaged template®. The restricted diffusion was quanti-
fied using restricted diffusion imaging®. Additionally, with dHCP,
HCPd, HCPa and camCAN, the diffusion data were reconstructed using
generalized g-sampling imaging® with a diffusion sampling length
ratio of 1.25. Alternatively, for HCPya, a diffusion sampling length ratio
of 2.5 was used, and the output resolution was 1 mm.

Connectome construction

Tractography. All networks were tracked using standard GQI plus
deterministic tractography in DSI Studio®. For participants three years
old and older, the QSIprep dsi_studio_gqi workflow’* was applied with
the AAL116 atlas’. All other participants were tracked directly in DSI
Studio using multiple versions of the AAL atlas. Participants aged 24 to
35 months were tracked with the AAL90 two-year-old atlas’, those
aged 12 to 23 months with the AAL90 one-year-old atlas”, and those
younger than 12 months with the AAL90 neonatal atlas™. For all net-
works parcellated with the AAL116 atlas, we removed additional sub-
cortical regions (numbers 91-116), which resulted in the AAL90 atlas.
This progressive use of AAL90 atlases with the same regions fit to
different brain volumes enables direct comparison between regions
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across the lifespan while accommodating for drastic brain growth in
the first two years of life. All tracking was performed with the same
parameters—maximum fiber length of 250 mm, minimum fiber length
of 30 mm, 5 million streamlines, random seeding, 1 mm step size, and
turning angle 35°. We used count-end connectivity, indicating that
streamlines were identified between two regions if the streamline
ended in both regions.

Harmonization. All data, including longitudinal and repeat scans
in BCP and neurodivergent group in CALM, were included in
harmonization (N=4216). Multiple harmonization methods for
variable density and density-controlled networks as well as
assessing efficacy of harmonization before and after thresholding
and can be found in the supplement (Supplementary Fig. 8). The
harmonization methods were evaluated by the total number of
FDR-corrected significant effects of study within age-bins across
density, modularity, core/periphery structure, global efficiency,
average degree, and average strength (see “Methods”; “Graph
Theory”), as well as visual inspection of generalized additive
models. We determined that our ‘double harmonized’ method
before thresholding was the most effective across both variable
and density-controlled analyses. Double harmonization was per-
formed using ComBat*” to harmonize across atlas and then har-
monize again across study (Fig. 1c). For each step, a mask was
used to only retain connections that were present before har-
monization in addition to setting any negative connections pro-
duced by harmonization to zero. Covariates that were preserved
during harmonization included participant ID, age, sex, and
neurodiversity group to identify children in CALM who are
neurodiverse.

Thresholding. Before thresholding, 14 participants were identified as
outliers (dAHCP n=1; CALM n=2; RED n=1; ACE n=1; HCPya n=3;
HCPa n=1; camCAN n =5) due to having network density above or
below three standard deviations for the age bin (comprised of the
closest rounded year) and were removed. With this reduced sample
(n=4,202), two thresholding methods were performed - (1) preserve
variable density across the lifespan and (2) control density across the
lifespan for topological comparison.

For the variable density analysis, we performed a generalized
additive model (see “Methods”, “Statistics”) on the raw network den-
sities and took 70% of the regression to obtain a ‘target’ density for
each age (Supplementary Fig. 1a). Then, for each age group within each
study, we applied the absolute threshold based on streamline count
cut-off that yielded an average density equal to the target density for
that age. The resulting networks were thresholded to densities ranging
from 21 to 8%, with the original relationship between age and density
preserved (Supplementary Fig. 1a). These networks were then used
only in the connectivity analysis to explore density, degree, and
strength of networks.

Additionally, the density-controlled networks were constructed
for topological analyses. These networks were thresholded by the
streamline counts so that each individual, regardless of age, had a 10%
dense network. 10% was utilized because the sparsest network in the
sample was 11%. Thus, 10% was the highest possible density where
every network in the sample is thresholded, as well as being consistent
with past lifespan work”. Additional densities of 8% and 5% can be
found in the supplement (Supplementary Fig. 1b). All networks were
converted to normalized weighted networks using weight_conver-
sion() from the Brain Connectivity Toolbox®, which rescales all
weights to range from O to 1.

Graph theory
All graph theory metrics were calculated using the Brain Connectivity
Toolbox (BCT) in MATLAB 2020b*, Global measures included network

density, modularity, global efficiency, characteristic path length, core/
periphery structure, small-worldness, k-core, and s-core, while local
measures utilized were degree, strength, local efficiency, clustering
coefficient, betweenness centrality, and subgraph centrality. All local
measures were averaged across the network for the topological ana-
lysis, though local-level correlations between measures and age are in
the supplement (Supplementary Fig. 6). Modularity was calculated at
one spatial resolution (gamma = 0.6), which was chosen after sweeping
through gamma values from 0.2 to 2. At each level, observed mod-
ularity was compared to the modularity of randomized networks with
preserved density and degree distributions. The spatial resolution was
decided based on which level had the largest Kolmogorov-Smirnov
(KS) statistic®?, indicating that the modularity structure was the most
non-random (Supplementary Fig. 9). Summaries of all measures can be
found in the supplement (Supplementary Table 2). All topological
measures were assessed using generalized additive models in RStudio
version 4.1.2%, In these models, cubic regression splines were used to
smooth across age, and sex, atlas, and dataset were controlled for.

Uniform Manifold Approximation and Projection (UMAP)

To project topological data into a manifold space, we used the UMAP
package in Python version 3.7.3%. Before data was put into the UMAP, it
was first standardized using Sklearn’s StandardScalar()**. UMAP
requires four pre-defined parameters—minimum distance and nearest
neighbors, number of components, and distance metric. Minimum
distance typically ranges between zero to one and determines how
closely data points are packed together in the low-dimensional
representation  (low  values result in more clustered
representations)®. Nearest neighbors defines the size of local neigh-
borhoods when learning the manifold structure®. This parameter,
therefore, determines the balance between local versus global struc-
ture—a low nearest neighbors value pushes the UMAP to capture more
local structure and vice versa. Nearest neighbors can be at minimum
two or at maximum one less than the length of the data input. The
number of components simply determines how many dimensions the
projection should be embedded in. We predefined this as three
dimensions in an effort to capture multi-dimensional changes without
losing interpretability. Lastly, the distance metric determines how the
distance is calculated. We used the Euclidean distance.

A limitation of UMAP is that the minimum distance and nearest
neighbors parameter choice greatly determines the shape of the pro-
jected manifold*®. While UMAP always captures patterns within the
data, the parameter choices alter which patterns are projected, making
it challenging to derive meaningful interpretations of the projections.
To mitigate this, we derived 968 combinations of UMAP parameters.
The nearest neighbor parameter was set to 88 whole numbers that
ranged from two to 89, while the minimum distance parameter was 11
values evenly spaced, ranging from 0.1 to one. Thus, we conducted our
analysis on a complete range of UMAP projections, from manifolds
representing mostly local patterns through manifolds capturing
mainly global patterns.

Turning point identification

To determine what constitutes a turning point, we have constructed
our own algorithm with multiple parameters. First, we must find a line
of best fit through the 3-dimensional manifold. In Python version 3.7.3,
we created three polynomial fits—one for each dimension—which
requires the choice of the polynomial degree (Fig. 4a). The equation
for each dimension is as follows:

Dimension(age) =, + B,age + B,age’ + B;age’ + B,age* + Bsage’ +¢
@

Polynomials were fit using the polyfit() function from the numpy
package, which uses least squares error’. Together, these polynomials
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create the 3D line of best fit through the manifold space. For our main
analysis, we fit 5-degree polynomials and have included iterative
polynomials ranging from two to 12 in the supplement (Supplementary
Fig. 10a). This sensitivity analysis highlights that a degree of five is a
middle-ground between visually underfit and overfit lines, with high-
degree lines including more middle-age turning points (e.g., between
50-70 years old). Importantly, turning points occurring around 10, 30,
and 80 are robust across most degree choices (Supplementary
Fig. 10a). Generally, the choice of degree impacts where in the lifespan
turning points are identified.

We then calculated the gradients of the lines of best fit and
identified points where the gradient changes sign (positive to negative
or negative to positive) along each dimension. Small fluctuations were
then filtered to remove minor inflections by removing points where
the sum of the gradients around the point was relatively small. This
filtering process requires two parameters - a gradient window (W) and
a gradient threshold (T). The gradient window determines the number
of years around the inflection point (i) that will be the scope of the
gradient threshold. The gradient threshold is the cut-off for how large
the sum of the absolute value of gradients within this range needs to be
to be retained. An inflection point will survive this cutoff if:

i+w
T<Y |G 2
i-w

G; represents the gradient at i year, W is the gradient window, and
T is the gradient threshold. The larger the gradient threshold, the
sharper the inflection point (i.e. steep slopes on either side of the
point) must be in order to be kept in the analysis. For our analysis, we
defined the gradient window to five years and the gradient threshold to
0.8, though it is important to note that many variations of these
parameters result in the same turning points being identified. Sensi-
tivity analysis of varying gradient thresholds can be found in the sup-
plement (Supplementary Fig. 10c). This analysis shows that turning
points are stable across gradient thresholds 0.1 to 0.9. Turning points
around eight and 83 are retained at a gradient threshold of 1.2. This
indicates that the first and last turning points of the lifespan are the
‘largest’ or ‘sharpest’ in terms of the change in slope through the
manifold space (Supplementary Fig. 10c). Thus, this parameter affects
the sensitivity to the size of turning points but not where the turning
points are located across the lifespan.

The second step in identifying turning points in a manifold is to
handle instances where multiple points have been detected in close
proximity. For example, if age 31 in dimension X and age 33 in
dimension Y were identified as inflection points, we interpret these as
representing a single turning point rather than two distinct trajec-
tories, given their proximity. This process requires an age window
parameter (A) to determine the age range around the inflection point
in which a mean will be calculated. This averaging procedure occurs
both within and across dimensions. Average turning points are then
rounded and considered the ‘final’ turning points. For our analysis, we
used an age window parameter of five years and have included a sen-
sitivity analysis to explore how changing the age window affects the
turning points identified which can be found in (Supplementary
Fig. 10b). Between age windows of one through 10, we see no changes
in turning points beyond a single year (Supplementary Fig. 10b). Thus,
this parameter effects where a turning point is identified, similar to the
degree of the polynomial, though its influence is minimal.

Turning points were identified for each of the 968 UMAP projec-
tions. Major turning points were defined by the peaks in the Gaussian
kernel density function of all turning points (Fig. 4c). Thus, these
points are the most frequent ages identified as turning points across all
manifolds. We also assessed turning points in variable density net-
works (Supplementary Fig. 10d) and sex-stratified projections that
have been mapped to the combined UMAP space using orthogonal

procrustes’ (Supplementary Fig. 5). This analysis demonstrates that
major turning points appear around similar ages for variable density
networks and sex-stratified samples as those calculated in density-
controlled networks, with some variation around the 66 turning point.
Thus, our conservative thresholding for easy topological interpret-
ability does not appear to drastically change where in the lifespan
major turning points have been identified. Major turning points mark
the average age at which topological data begins a new trajectory
through the manifold, indicating a distinctly different organizational
change across age. Thus, between major turning points, we define age
epochs in which topological change is occurring along the same tra-
jectory through the manifold space.

Epoch correlations

We applied Pearson correlations within epochs (i.e., age ranges
between major turning points) to explore changes in each organiza-
tional metric across age. We used correlations to examine between
epochs simply by identifying when significant correlations in con-
secutive epochs changed direction (i.e., from a positive correlation to a
negative correlation and vice versa) (Supplementary Fig. 7a). We also
provided local-level correlations between measures and age within
each brain region after false-discovery rate (FDR) correction®” (Sup-
plementary Fig. 6).

Least Absolute Shrinkage and Selection Operator (LASSO)

To explore driving topological factors within epochs, we employed
regularized LASSO models’® in MATLAB 2020b with 10-fold cross-
validation (CV) to perform variable selection with multicollinear pre-
dictors. The benefit of LASSO models is that they penalize the absolute
value of coefficients, which results in some coefficients being pushed
to zero, allowing for easy interpretation of important model features®.
This penalization term is multiplied by a constant, A, which is deter-
mined through the 10-fold CV. 10-fold CV trains the LASSO on nine
folds (i.e., a subset of the data) and is tested on the 10" fold. To
encourage sparsity in the model, we selected the largest lambda where
the mean squared error (MSE) is within one standard error of the
minimum MSE. For the two epochs, this level of sparsity resulted in no
variables selected, and therefore, the LASSO model for epochs four
and five was created by selecting the lambda value with the
minimum MSE.

Principal Components Analysis (PCA)

We conducted a PCA”’ in MATLAB2020b to reduce the dimensionality
of graph theory metrics for the purpose of exploring between-epoch
changes. After standardizing the data, we ran a PCA with the maximum
number of components (11) and conducted a parallel analysis to
determine how many components to retain'’’. For the parallel analysis,
we created 1,000 iterations of standardized random data and con-
ducted PCAs for each iteration. We then calculated the top 95% con-
fidence interval of eigenvalues produced by the random samples'*.
Components from the original PCA with eigenvalues exceeding the
threshold set by 95% confidence interval from the random eigenvalues
were retained as this indicates that eigenvalues were larger than
expected by chance. This analysis indicated three components to be
retained (Fig. 6a). A second PCA was run, this time constrained to three
components which convey 76.61% of variance across the sample
(Fig. 6a; Supplementary Fig. 4). To improve loading interpretation, an
orthogonal rotation was applied using rotatefactors() with the varimax
method™.

We compared epochs based on their PCA scores, first using
Levene’s Test for Relative Variation'*? in Python version 3.7.3 to
determine if the variance of PCA scores significantly differed across
epochs. Since this test was significant, we used Welch’s Analysis of
Variance (ANOVA)'® in Python to assess significant differences in mean
PCA scores across epochs. Lastly, we ran post hoc Games-Howell'**
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tests in Python to determine which consecutive groups were sig-
nificantly different (Supplementary Fig. 7b). The full table of all Games-
Howell comparison outcomes can be found in the supplement (Sup-
plementary Table 5). In some instances, p-values were set equal to zero
due to the truncated precision of Python. In these cases, p-values are
reported as less than the minimum printable value, p <1.00 x 1072,

Dynamic Time Warping (DTW)

We also examined differences between epochs using DTW on PCA
score series conducted in Python version 3.7.3'%. DTW warps two
time series to their optimal alignment. The algorithm calculates the
local Euclidean distances between points in each series, calculating
the global alignment between the series as the warping path that
minimizes the sum of distances between series'®. DTW distance,
defined as the minimum cumulative distance of the warp, quantifies
how far points in one series must shift to align with another, pro-
viding insight into differences in their shapes. For our analysis, we
constructed a series for each epoch across each PC, represented as
the average PCA score for each age (Supplementary Fig. 7c). The
DTW distances for optimal warping between consecutive epochs
were standardized within each principal component. These dis-
tances were then qualitatively compared—with larger distances
suggesting more disparity between the shape of those series’
trajectories.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The derived data generated in this study are available at https://osf.io/
7p4y3/. CALM raw data are available at https://portal.camide.cam.ac.
uk/overview/1158. Human Connectome Project raw data are available
at https://nda.nih.gov/. CamCAN raw data are available at http://www.
mrc-cbu.cam.ac.uk/datasets/camcan/. The semi-processed data from
dHCP, HCPd, HCPya, HCPa, and camCAN used in this publication are
available at https://brain.labsolver.org/. Source data are provided with
this paper.

Code availability
All code is available at https://github.com/alexamousley/lifespan_
topological_turning_points.
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